
ABSTRACT
Commercial applications such as databases and

Web servers constitute the most important market segment
for high-performance servers. Among these applications, on-
line transaction processing (OLTP) workloads provide a
challenging set of requirements for system designs since they
often exhibit inefficient executions dominated by a large
memory stall component. A number of recent studies have
characterized the behavior of transaction processing
workloads and proposed architectural features to improve
their performance. These studies have typically used a
workload based on either the TPC-B or the TPC-C bench-
mark, with many of them opting for the simpler TPC-B
benchmark. Given that the TPC-B and TPC-C workloads
exhibit dramatically different characteristics on certain
architectural metrics (such as cycles-per-instruction), it
becomes important to find out whether the results or conclu-
sions of these previous studies are heavily biased due to their
choice of workload.

This paper presents a detailed comparison of the
debit-credit (modeled after TPC-B) and order-entry
(modeled after TPC-C) transaction processing workloads in
the context of various architectural choices. Our experiments
use the Oracle commercial database engine for running the
workloads, with results generated using both full system
simulations and actual runs on Alpha multiprocessors. Our
results confirm that certain characteristics of these
workloads, such as cycles-per-instruction (CPI) and dirty
miss frequency, are indeed quite different. Nonetheless, it
turns out that the overall impact of most architectural
choices (e.g., out-of-order execution, on-chip integration of
system modules, chip multiprocessing) are surprisingly
similar for the two workloads. Furthermore, the above
similarity between the two workloads is sometimes due to
non-intuitive effects that would be difficult to predict without
conducting the experiment with both workloads. The findings
in this paper make it easier to compare results from studies
that use one or the other workload. Overall, we observe that
for a wide range of architectural decisions that we consid-
ered, using the simpler TPC-B workload leads to virtually
the same conclusions as using the more complex TPC-C
workload. Finally, we show that these same conclusions hold
across two generations of the Oracle database engine.

1 Introduction
Commercial applications such as databases and Web
servers constitute the largest and fastest-growing
segment of the market for high-performance servers.
While applications such as decision support (DSS) and
Web index search have been shown to be relatively
insensitive to memory system performance [2], a
number of recent studies have underscored the
radically different behavior of online transaction
processing (OLTP) workloads [2, 4, 5, 7, 10, 13, 16].
In general, OLTP workloads lead to inefficient execu-
tions with a large memory stall component and present
a more challenging set of requirements for processor
and memory system design. This behavior arises from
large instruction and data footprints and high commu-
nication miss rates that are characteristic for such
workloads [2]. At the same time, the increasing
popularity of electronic commerce on the Web further
elevates the importance of achieving good perfor-
mance on OLTP workloads.

Most of the previous studies on transaction
processing are based on workloads modeled after
either the TPC-B [20] or the TPC-C [21] benchmark.
The TPC-B benchmark models a debit-credit workload
in a banking environment, and consists of a single
light-weight update-intensive transaction that operates
on four types of database records with simple relation-
ships among them. The TPC-C benchmark is substan-
tially more complex and models an order-entry
workload in a wholesale supplier environment. TPC-C
involves a mix of five transaction types of different
complexity that operate on a database of nine different
record types with non-trivial relationships among
them. Furthermore, while TPC-B primarily focuses on
stressing the back-end database server, TPC-C
simulates a complete computing environment with
user and network interactions.

For the purpose of studying the performance of
back-end database server architectures, there are two
key issues that distinguish the TPC-B and TPC-C
workloads. First, it is much easier to experiment with
TPC-B. The more complex database for TPC-C, along

A Detailed Comparison of Two
Transaction Processing Workloads

Robert Stets, Kourosh Gharachorloo, and Luiz André Barroso (1)

Western Research Laboratory
Hewlett-Packard Company

1501 Page Mill Road
Palo Alto, CA 94304

(1) Barroso has moved to Google, Inc., 2400 Bayshore
Parkway, Mountain View, CA, 94043.

with multiple transaction types and the inclusion of
user terminals and networking activity as part of the
workload, make the TPC-C workload substantially
more challenging to setup and to tune. Second,
compared to the single update-intensive transaction in
TPC-B, which stresses the memory and IO subsystems
of the back-end server, the longer running TPC-C
transactions lead to a higher processor utilization, with
a slightly lower level of I/O and memory activity.

The simpler setup and tuning requirements for
TPC-B (relative to TPC-C) have made it the more
popular workload to model in a number of recent
architectural studies [1, 2, 3, 8, 9, 14, 16]. Further-
more, the TPC-B workload has been successfully
scaled down to make it amenable to simulation studies
focusing on processor and memory system behavior
[2]. Nonetheless, the TPC-B and TPC-C workloads
have significantly different architectural behavior in
some respects. For example, due to its somewhat
worse memory system behavior, TPC-B exhibits a CPI
(cycles-per-instruction) metric that is typically 1.5 to 2
times larger than that of TPC-C on most platforms.
Given the above differences, it becomes important to
find out whether the results or conclusions of the archi-
tectural studies based on one workload (e.g., TPC-B)
would fundamentally change if we were to use the
other workload (e.g., TPC-C).

This paper presents a detailed comparison of the
debit-credit (modeled after TPC-B) and order-entry
(modeled after TPC-C) transaction processing
workloads. To the best of our knowledge, this is the
first detailed side-by-side study of these two
workloads across a wide range of architectural
features. Our performance results for OLTP are based
on executions of the Oracle commercial database
engine (version 8.0.4) running under Compaq Tru64
Unix. As part of this study, we have successfully
scaled down the TPC-C workload (using a similar
methodology to that previously used for TPC-B [2]) to
make it more amenable to experimentation. We use a
combination of full system simulation (including
operating system activity) and actual runs on Alpha
multiprocessor platforms for our experiments.

We begin by studying the general processor and
memory system behavior of the debit-credit and order-
entry database workloads. We next study the
workloads in the context of various architectural
choices such as out-of-order processors, aggressive on-
chip integration of system modules, and chip multipro-
cessing (CMP). Our results show that even though
certain characteristics of the two workloads (such as
CPI and dirty miss frequency) are dramatically differ-
ent, the overall impact of most architectural choices
are surprisingly similar. This similarity sometimes
stems from somewhat non-intuitive effects. The
performance impact of chip multiprocessing (as in

Piranha [3]) on the two workloads is an illustrative
case. Simple reasoning based on the basic characteris-
tics of the two workloads would suggest that TPC-C
should benefit less from CMP due to its higher proces-
sor utilization and lower memory system activity.
However, our results show that CMP improves the
performance of both workloads by virtually the same
factor due to a combination of architectural effects.
The above is a clear example where simple intuitive
reasoning based on the basic characteristics of the two
workloads can lead to erroneous conclusions, and
stresses the importance of a comparison study like ours
which is based on actual measurement.

Finally, we evaluate the impact of changes in the
underlying database management system (DBMS) by
repeating the above architectural experiments on two
consecutive major releases of the Oracle server
software. Yet again, we find that although significant
improvement is observed in all levels of the memory
hierarchy with the newer release, the important archi-
tectural trends remain fundamentally unchanged.

The comprehensive comparison presented in this
paper allows architects interested in transaction
processing to better understand the differences
between TPC-B and TPC-C workloads. Furthermore,
these findings make it easier to compare results from
studies that use one or the other workload, and in some
cases allow for an approximate extrapolation of results
for one workload based on actual results for the other
workload. Overall, we believe that studying either of
these workloads is likely to provide architects and
system designers with better insights for building more
efficient server architectures for commercial applica-
tions. Furthermore, our results show that for a wide
range of architectural decisions that we considered,
using the simpler workload leads to virtually the same
conclusions as using the more complex workload.

The rest of the paper is structured as follows. The
next section provides a brief history of transaction
processing benchmarks along with a description of our
two workloads. Section 3 presents our experimental
methodology, including the hardware platforms and
simulation environment used in this study. We present
a detailed characterization and measurement of the two
workloads with different processor and memory
system architectures in Section 4. Finally, we discuss
related work and conclude.

2 Background on Transaction
Processing Workloads
This section provides a description and comparison of
our two transaction processing workloads. Transaction
processing workloads are used in day-to-day business
operations, and generally consist of a large number of
online clients who continually issue short running

transactions, each accessing and/or updating a small
fraction of the database data. The transaction process-
ing server must be able to service a large number of
transactions concurrently to meet the response time
requirements of live operation, while guaranteeing the
integrity of the database.

With the increasing use of computers for business
applications, the first transaction processing bench-
marks began to appear in the mid-eighties [19]. One of
the first benchmarks used was TP1, a batch-mode
benchmark that modeled a system serving ATM trans-
actions. Next came the DebitCredit benchmark, which
was a first attempt to measure not just server perfor-
mance but also that of the network and clients. Debit-
Credit also introduced scaling rules that are in common
use today. The need for better comparison among
competing systems further drove the standardization of
database benchmarks, culminating in the creation of
the Transaction Processing Performance Council
(TPC) in 1988. The first transaction processing bench-
mark by the TPC, TPC-A, was introduced in 1989.
TPC-A extended DebitCredit by stipulating limits on
response time, and adding rules to ensure measurement
of sustainable performance, as well as tests for ACID
(atomicity, consistency, isolation, and durability)
requirements. TPC-B was introduced in 1990 as a
simplified version of TPC-A, without the network or
clients included as part of the workload. TPC-B was
strongly advocated by vendors that did not offer
complete OLTP solutions in their product portfolios,
and therefore had a special interest in measuring server
performance in isolation. In 1992, TPC-C was
released. The main motivation for the development of
TPC-C was to provide a richer set of transactions types
(TPC-B has only one) and database relations that
would more closely represent the complexities of real
online transaction processing workloads.

The two OLTP workloads used in this study are
modeled after TPC-B and TPC-C.1 TPC-C is the
currently approved OLTP benchmark from TPC, and is
the most important benchmark used by vendors of
server-class systems. Both TPC-A and TPC-B were
declared obsolete as official benchmarks in 1995,
having been superseded by TPC-C.

2.1 Oracle Database Engine
Our OLTP workloads run on top of the Oracle 8.0.4
DBMS. The Oracle DBMS runs on both uniprocessors
and shared memory multiprocessor machines. Recent
benchmark results demonstrate that the software scales
well on current SMP systems. The server executes as a

collection of Unix processes that share a common large
shared memory segment, called the System Global
Area, or SGA. Oracle has two types of processes,
daemons and servers. The daemons run in the
background and handle miscellaneous housekeeping
tasks such as checking for failures and deadlocks,
evicting dirty database blocks to disk, and writing redo
logs. The server processes are the ones that actually
execute database transactions and account for most of
the processing. Both daemon and server processes
share the same code, but have their own private data
segment called the Program Global Area, or PGA.
Daemons and servers primarily use the SGA for
communication and synchronization, but also use
signals to wake up blocked processes.

The SGA is roughly composed of two regions,
namely the block buffer and meta-data areas. The
block buffer area caches the most recently used
database disk blocks in main memory, and typically
accounts for 80% of the SGA size. The meta-data area
contains the directory information that is used to
access the block buffers, in addition to space for
miscellaneous buffers and synchronization structures.

Database engines maintain two important types of
persistent data structures: the database tables and the
redo log. The latter keeps a compressed log of commit-
ted transactions, and is used to restore the state of the
database in case of failure. Committing only the log to
disk (instead of the actual data) allows for faster trans-
action commits and for a more efficient use of disk
bandwidth. Oracle has a single daemon process, the
log writer, that groups commit logs from independent
transactions into a single disk write for more efficient
use of the disk bandwidth.

We use Oracle in a dedicated mode for our OLTP
workloads, whereby each client process has a
dedicated server process for serving its transactions.
The communication between a client and its server
process occurs through a Unix pipe. To guarantee the
durability of a committed transaction, commit requests
block the corresponding server process until the redo
information has been written to the log. To hide I/O
latencies, including the latency of log writes, our
OLTP runs are usually configured with multiple server
processes (e.g. 7-8) per processor.

2.2 Debit-Credit Workload (TPC-B-like)
Our Debit-Credit (DB) workload is modeled after the
TPC-B benchmark [20]. This benchmark models a
banking system, with each transaction simulating a
balance update to a randomly chosen account. The
account balance update involves updates to four tables:
the branch table, the teller table, the account table
itself, and a history table. In terms of basic database
operations, it consists of 3 row selections with data
retrieval and update, and 1 row insertion. Each transac-

1 Our OLTP workloads use the same SQL statements, table layouts,
and database populations as indicated in the benchmark specifica-
tions. As our work is focused on the server, the workloads do not
adhere to constraints outside the server (e.g., number of client ter-
minals, sufficient storage space for 60 days, et cetera.).

tion has fairly small computational needs, but the
workload is I/O intensive because of the four table
updates per transaction. Fortunately, even in a full-size
TPC-B database (e.g., a few hundred GBs), the history,
branch, and teller tables can be cached in physical
memory, and frequent disk accesses are limited to the
account table and the redo log.

2.3 Order-Entry Workload (TPC-C-like)
Our Order-Entry (OE) workload is modeled after the
TPC-C benchmark [21]. TPC-C models the activities
of a large wholesale supplier that operates from a
number of warehouses, each serving ten sale districts,
with each district serving 3,000 customers. Since we
are only concerned with server performance, our
workload is configured to run similarly to TPC-B in
that only the activity in the server is evaluated.

TPC-C’s database schema is significantly more
complex than that of TPC-B. It consists of nine tables
of various sizes and organization. Eight of the tables
are scaled with the number of warehouses in the
database. They are the Warehouse, Stock, District,
Customer, Order, New-Order, Order-Line, and History
tables. The Item table has a fixed size of 100,000 rows
since there is a fixed number of stocked product types.

Instead of the single transaction of TPC-B, TPC-C
has five transaction types: New-Order, Payment,
Order-Status, Delivery, and Stock-Level. Clients
submit a semi-random mix of such transactions to the
server, such that 45% are New-Order transactions,
43% are Payment transactions, and the remaining are
equally divided among the other transaction types.
Since about 90% of the server activity is spent on
New-Order and Payment transactions, we describe
those in more detail.

The New-Order transaction is classified as “mid-
weight” with respect to its computational require-
ments. Each transaction places orders for an average of
10 items (usually from the “home” warehouse with
respect to the client terminal location) and submits
orders for each item. The New-Order transaction
touches all but one of the tables in the database. It
performs an average of 10 row selections with data
retrieval, 11 row selections with data retrieval and
update, and 12 row insertions.

The Payment transaction is classified as “light-
weight”. The transaction updates the customer balance,
as well as sales statistics on the district and warehouse
levels. Each transaction performs 3 row selections with
data retrieval and update, and 1 row insertion. In
addition, 60% of the time the customer identification is
done through the customer last name (a non-primary
key), which on average requires another two row
selections with data retrieval. This transaction is the
closest in behavior to the single TPC-B transaction.

2.4 Workload Setup
The Debit-Credit and Order-Entry workloads have
similar basic functionality, however experimentation
with Order-Entry is much more challenging. First, for
a given server performance level, Order-Entry requires
a much larger database size in order to fully utilize the
system. Second, the presence of five transaction types
makes it necessary to run the workload longer in order
to obtain a representative snapshot. Both these issues
complicate experimentation, particularly when simula-
tion is used. Finally, the higher complexity of Order-
Entry, in terms of its database schema and transaction
mixes, results in a much more difficult setup and
tuning effort when compared to Debit-Credit. Careful
tuning of this class of workloads is essential to any
benchmarking or experimentation since a poorly
configured OLTP workload is frequently I/O-bound or
shows artificially high contention for locks, both of
which can overshadow important architectural effects.

Both of our workloads were scaled down from the
sizes that are mandated by the TPC scaling rules
(which require a system with a higher performance to
use a proportionally larger database size). Such scaling
is critical to enable architectural experimentation,
particularly for simulation, since the systems we
analyze would have otherwise required database sizes
of several hundreds of gigabytes. The scaling was done
carefully in order to preserve the processor and
memory system behavior of the full-size workloads.
(The techniques for scaling are described in earlier
work [2].) After scaling, the workloads were exten-
sively tuned to achieve the best possible performance
in the systems used for our experiments. The resulting
workload sizes make the experiments run mostly out-
of-memory. Our Debit-Credit workload uses 40
branches, with a total database size of 1.2GB. Our
Order-Entry workload uses eight warehouses, with a
3.0GB database size. Both workloads use a 600MB
SGA (the shared memory area is mostly used for
caching database blocks), and are configured with 8
server processes per CPU.

Our monitoring experiments run 1500 transac-
tions, while our simulations run 500 transactions. Our
measurement interval was chosen to eliminate
database startup effects such as loading of the database
block cache.

3 Methodology
This section describes the hardware platforms and the
simulation environment used in this study.

3.1 Hardware Platforms
Our monitoring experiments are performed on two
different AlphaServer platforms. Our AlphaServer

8400 consists of eight 612MHz Alpha 21164 (in-order
issue) processors. Each processor has 8KB direct-
mapped on-chip instruction and write-through data
caches, a 96KB on-chip combined 3-way set associa-
tive second-level cache (Scache), and a 4MB direct-
mapped board-level cache (Bcache). The block size is
32 bytes at the first level caches and 64 bytes at lower
levels of the cache hierarchy. The dependent load
latencies measured on the AlphaServer 8400 are 11ns
for a Scache hit, 55ns for a Bcache hit, 360ns for a
miss to memory, and 542ns for a dirty miss (cache-to-
cache transfer). The Alpha 21164 processor provides a
rich set of event counters that can be used to construct
a detailed view of processor behavior, including all
activity within the three-level cache hierarchy [4]. We
used these counters in a similar way to a previous
study [2] to monitor the processor and memory system
behavior of our workloads.

Our AlphaServer DS20 consists of two 500MHz
Alpha 21264 (out-of-order issue) processors. Each
processor has 64KB 2-way associative on-chip instruc-
tion and data caches, and a 4MB direct-mapped L2
cache. The dependent load latencies measured on the
AlphaServer DS20 are 38ns for an L2 hit, 190ns for a
miss to memory, and 350ns for a dirty miss (cache-to-
cache transfer).

3.2 Simulation Environment
For our simulations, we use the SimOS-Alpha environ-
ment (our Alpha port of SimOS [17]), which was used
in a previous study of commercial applications and has
been validated against Alpha multiprocessor hardware
[2]. SimOS-Alpha is a full system simulation environ-
ment that models the hardware components of Alpha-
based multiprocessors (processors, MMU, caches,
disks, console) in enough detail to run Alpha system
software. Specifically, SimOS-Alpha models the
micro-architecture of an Alpha processor [18] and runs
essentially unmodified versions of Digital Unix 4.0
and PAL code.

The ability to simulate both user and system code
under SimOS-Alpha is essential given the rich level of
system interactions exhibited by commercial
workloads. For the runs in this study, the kernel
component is approximately 25% of the total execu-

tion time (user and kernel). In addition, setting up the
workload under SimOS-Alpha is particularly simple
since it uses the same disk partitions, databases, appli-
cation binaries, and scripts that are used on our
hardware platforms to tune the workload.

SimOS-Alpha supports multiple levels of simula-
tion detail, enabling the user to choose the most appro-
priate trade-off between simulation detail and
slowdown. Its fastest simulator uses an on-the-fly
binary translation technique to position the workload
into a steady state. For its medium-speed (in simula-
tion time) processor module, SimOS-Alpha models a
single-issue pipelined processor. Finally, the slowest
speed processor module models a multiple issue out-
of-order processor.

Table 1 presents the memory system configuration
assumed for our base system with all system-level
modules being external to the processor chip, except
for first-level caches and second-level cache tags. Our
multiprocessor configuration consists of 8 processor
nodes with distributed memory and a directory-based
cache coherence scheme. Our simulations model a
sequentially consistent memory system. Table 2
presents the memory latencies for the various configu-
rations we study. The configurations represent the
second-level cache (L2), memory controllers (MC),
and coherence controller and network router (CC/NR)
being successively integrated with the processor. The
table shows latencies for L2 cache hit, local memory,
remote memory (2-hop), and dirty in a remote cache
(3-hop).

Processor Speed 1 GHz
Cache line size 64 Bytes
L1 data cache size (on chip) 64 KB
L1 data cache associativity 2-way
L1 instruction cache size (on chip) 64 KB
L1 instruction cache associativity 2-way
L2 cache size (off chip) 4 MB
L2 cache associativity 1-way
Multiprocessor Configuration 8 processors

Table 1: Base system parameters.

Configuration L2 Hit Local Remote Remote
Dirty

Base (4-way L2) 30 100 175 275
L2 integrated, DRAM 25 100 175 275
L2, MC integrated 15 75 225 275
L2, MC, CC, NR integrated 15 75 150 200

Table 2: Memory latencies (in cycles) for the chip-level integration experiments.

For measuring the impact of chip multiprocessing,
we use a slightly different set of parameters. Table 3
shows the parameters we use for our chip multipro-
cessing experiments which compare Piranha [3] to an
aggressive next-generation out-of-order processor.

4 Impact of Workload Choice on
Architecture Trade-offs
This section presents results of actual hardware
measurements and simulations for our two transaction
processing workloads. We begin by presenting general
execution time and cache behavior measurements.
Next we consider the performance impact of various
architectural choices: out-of-order processors, chip-
level integration of system components, and chip
multiprocessing. Finally, we evaluate the above results
across two different versions of the database manage-
ment software. Because we use different versions of
hardware, Oracle DBMS, and operating system, the
results in this section cannot be directly compared with
those in previous papers [1,2,3,14] that use the Debit-
Credit (TPC-B-like) workload.

4.1 General Execution Time Breakdown
We analyze execution time behavior using the
hardware event counters on the 8-processor AlphaSer-
ver 8400 platform. Figure 1 presents the basic break-
down of execution time into four components: single-
and double-issue cycles, and instruction- and data-
related stall cycles. We also show the cycles per
instructions (CPI) directly calculated from the event
counts. Both workloads suffer a significant fraction of
stall cycles with instruction stalls being almost as

important as data stalls. The main difference is that
Order-Entry (OE) exhibits 1.6 times better CPI than
Debit-Credit (DC).2 This difference is primarily due to
more complex and compute-intensive queries in OE,
and, as will be shown in the next section, the better
locality of that workload.

Using a wider set of event counts, combined with
latency estimates, we calculate the approximate break-
down of cycles into the more detailed categories
shown in Figure 2. The shaded segments show the stall
cycles spent at each level of the memory hierarchy. We
also show segments corresponding to single- and dual-
issue cycles. The remaining segments are pipeline and
address translation related stalls. Overall, the memory
hierarchy performance of OE is better than DC. Never-
theless, both workloads are sensitive to latency at all
levels of the memory hierarchy. In addition, the
“memory barrier” component is significantly larger in
DC; this is related to the higher frequency of synchro-
nization operations due to the much simpler transac-
tions in DC.

4.2 Cache Behavior
Table 4 presents the cache miss rates at all levels of the
cache hierarchy, measured on the 8-processor
AlphaServer 8400. The local miss ratio is the rate of
accesses that miss in the cache relative to those that
reach that cache. The fraction of dirty misses is relative
to Bcache misses. The results show that both
workloads overwhelm all the on-chip caches. While
the Bcache exhibits some locality, its miss rate is still
significant, with DC exhibiting a 1.6x higher miss rate.
The other significant difference is the higher fraction
of dirty misses in DC. Again, this is likely due to the
much shorter transactions in DC, which increases the

Parameter Piranha
(P8)

Next-
Generation

Microprocess
or (OOO)

Processor Speed 500 MHz 1 GHz
Type in-order out-of-order
Issue Width 1 4
Instr. Window Size - 64
Cache Line Size 64 bytes 64 bytes
L1 Cache Size 64 KB 64 KB
L1 Cache Associativity 2-way 2-way
L2 Cache Size 1 MB 1.5 MB
L2 Cache Associativity 8-way 6-way
L2 Hit/Fwd Latency 16 ns / 24 ns 12 ns / NA
Memory Latency 80 ns 80 ns

Table 3: Parameters for experiments on the impact of
chip multiprocessing.

2 The higher CPI for Debit-Credit compared to a previous paper [2]
is mostly due to a two times faster processor frequency.

Figure 1. Basic cycle breakdown.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Debit-Credit
CPI: 8.5

Order-Entry
CPI: 5.3

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

data_stalls
instruction_stalls
dual_issue
single_issue

relative frequency of events that are associated with
inter-process communication (such as commits).
Finally, the on-chip cache behavior is similar.

Using full-system simulation, we study the impact
of L2 cache sizes and associativity on the performance
of the two workloads. Figure 3 shows the normalized
execution time for various cache sizes with one- and
four-way associativity, using an 8-processor configura-
tion (base configuration in Table 2). All times are
normalized to the execution of the 1MB direct-mapped
cache for each workload. The figure also shows the
breakdown of execution into busy, L2 hit, and L2 miss
times (L2 miss times include both memory and dirty
misses). Both workloads show similar gains from
larger caches. However, DC shows greater benefit
from associativity.

Our measurement results on the AlphaServer 8400
are biased by the fact that the Alpha 21164 processor
has very small first-level caches (8KB/8KB), which
makes hits in the Scache a significant factor in overall

performance. For more modern processors, larger first-
level caches would capture many of the hits in the
Scache. We use simulation to study the effect of larger
first-level caches. Figure 4 shows the miss rates for the
two workloads as the function of the first-level cache
size for an 8-processor configuration. We assume
separate instruction and data caches that are 2-way set-
associative. User and kernel misses are shown. At the
user level, both workloads exhibit a higher number of
instruction cache misses relative to data cache misses.
Consistent with our hardware measurements, DC
exhibits higher miss rates than OE for both instructions
and data. OE has better locality, and its relative gain
from larger first-level caches is higher as well. At
64KB cache sizes, which is typical in current micro-
processors, both workloads still exhibit a significant
number of first-level cache misses.

4.3 Out-of-Order Processors
The results presented so far have been based on in-
order processors. This section presents simulation
results using the multiple-issue out-of-order model
described in Section 3.2, along with measurements on
Alpha 21264-based multiprocessors. Our out-of-order
simulation results are based on an aggressive four-
wide issue processor with four integer units (our
workloads have no floating-point instructions), two
load-store units, and a window size of 64 instructions.

Figure 5 presents results comparing in-order vs.
out-of-order processors. In this section we focus on the
two left-most bars for each workload; the remaining
bars will be discussed in the next section. The left-
most bar represents a single-issue in-order (INO)
processor, while the bar next to it represents the 4-

Figure 2. Detailed estimated cycle breakdown. Memory subsystem cycles are shown in the shaded pattern.

scache
12%

bcache
22%

memory
33%

dirty
11%

tlb
1%

tw o-issue
3%one-issue

5% replay trap
4%

branch/pc
mispr.

1%
mem.

barrier
8%

Debit-Credit

scache
17%

bcache
28%

memory
25% branch/pc

mispr.
2%

replay trap
5%

mem.
barrier

4%

tlb
3%

tw o-issue
6%

one-issue
6%dirty

4%

Order-Entry

Parameter Debit-Credit Order-Entry
Icache (global) 13.6% 13.4%
Dcache (global) 22.2% 31.0%
Scache (global) 7.5% 7.5%
Bcache (global) 1.6% 1.0%
Scache (local) 32.3% 28.2%
Bcache (local) 21.4% 13.5%
Dirty miss fraction 17.8% 9.6%

Table 4: Cache miss rate in a 21164 system for
Debit-Credit and Order-Entry workloads.

issue out-of-order (OOO) processor described above
(both use the base latencies in Table 2). The execution
times are normalized to the base OOO configuration in
each workload. As shown in the figure, the benefits of
out-of-order processors are nearly identical for the two
workloads (1.35x for DC and 1.47x for OE).

We also compared the performance of the two
workloads using the AlphaServer 8400 (which uses the
in-order Alpha 21164) and the AlphaServer DS20
(which uses the out-of-order Alpha 21264), with two
processors active on each platform. The performance
gains from using the AlphaServer DS20 system is
again almost identical for both workloads (2.44x for
DC, and 2.42x for OE). However these performance
gains are only partly due to out-of-order effects, since
the DS20 platform also has a more efficient memory
subsystem, as discussed in Section 3.1.

4.4 On-Chip Integration of System
Functionality
We next consider the impact of integrating various
system modules onto the processor chip. Referring
back to Figure 5, the right-most three bars show the
impact of successively integrating the L2, the L2 and
memory controllers (L2+MC), and finally also
integrating the coherence controller and network router
(All) onto the processor chip. These configurations
were specified in Table 3. The trends for integrating
just the L2 are similar, with DC showing slightly larger
overall gains. Integrating the L2 and MC provides
lower local latencies, but leads to a higher remote
(two-hop) latency as shown in Table 2 (this assumption
is justified in an earlier paper [1]). Both OE and DC
are impacted by the increased two-hop miss latency
and both experience only small benefits from the faster
local latency. Both workloads exhibit slight

Figure 3. Effect of different L2 sizes and associativities.

0

20

40

60

80

100

120

1MB
1-way

1MB
4-way

2MB
1-way

2MB
4-way

4MB
1-way

4MB
4-way

1MB
1-way

1MB
4-way

2MB
1-way

2MB
4-way

4MB
1-way

4MB
4-way

Debit-Credit Order-Entry

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e L2 Miss

L2 Hit
Busy

Figure 4. Miss rate for different L1 cache sizes.

0
1
2
3
4
5
6
7
8

32K 64K 128K 32K 64K 128K 32K 64K 128K 32K 64K 128K

Us er Kernel User Kernel

Debit-Credit Order-Entry

M
is

se
s

pe
r 1

00
 In

st
rs

Data Miss
Ins tr Mis s

slowdowns for L2+MC vs. L2. However, the L2+MC
configuration is only used to isolate performance
effects, as it is not a viable design decision to break the
tight coupling between the MC and CC [1]. The more
interesting and aggressive design point is full chip-
level integration (All OOO), and we see that this
design point provides an improvement of 1.36x and
1.22x for DC and OE. DC benefits more from the
lower latencies resulting from full integration, due to
its higher fraction of time spent in the memory system.

4.5 Chip Multiprocessing
Figure 6 compares the performance of a single out-of-
order integrated processor versus a chip multiprocessor
with eight single-issue, in-order cores (parameters
specified in Table 3). The parameters for the chip
multiprocessor are based on the Piranha CMP [3],
which was designed for an ASIC design flow. As a
result, some parameters (e.g., 500MHz clock speed)
are conservative compared to the out-of-order proces-
sor, which assumes a full-custom design flow. Since
these experiments use single-chip configurations, and
correspondingly there is no chip-to-chip communica-
tion, the L2 miss component is significantly smaller
compared to the results in the previous sections.
Overall, the results for DC show a gain of 2.9x for the
CMP. The OE results show a slightly higher gain of
3.3x. By exploiting thread-level parallelism, the CMP
is able to effectively produce a relatively large number
of concurrent memory requests. In contrast, the
relatively low degree of instruction-level parallelism
hampers the OOO processor’s ability to exploit paral-
lelism in the memory subsystem..

Given the results in the previous sections, which
show that DC spends a larger fraction of time in the
memory system, the gains from chip multiprocessing

might be expected to be larger for DC than for OE.
Surprisingly, we observe that DC and OE exhibit virtu-
ally the same gains from CMP. One of the reasons for
this surprising result is the cache size assumptions for
this experiment (1.5MB for OOO and 1MB for CMP,
given CMP uses more area for the multiple, albeit
smaller, processor cores). Given the worse locality of
DC, the smaller cache in CMP hurts its performance
relative to OOO more than in the case of OE. This
effect offsets the higher gains from CMP that one
would intuitively expect for DC, leading to approxi-
mately the same performance gains for both workloads

Figure 5. Performance impact of out-of-order processors and chip-level integration (8-processor configuration).

0

20

40

60

80

100

120

140

160

Bas e
INO

Bas e
OOO

L2
OOO

L2+MC
OOO

All
OOO

Bas e
INO

Bas e
OOO

L2
OOO

L2+MC
OOO

All
OOO

Debit-Credit Order-Entry

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e L2 Mis s

L2 Hit
Bus y

Figure 6. Chip multiprocessing performance.

0

20

40

60

80

100

120

OOO
1GHz

4-issue

CMP (8P)
500MHz
1-issue

OOO
1GHz

4-issue

CMP (8P)
500MHz
1-issue

Debit-Credit Order-Entry

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

L2 Miss
L2 Hit
Busy

4.6 Improvements in Database
Management Software
In addition to understanding the characteristics of the
two transaction processing workloads, it is important
to realize that the evolution of the underlying database
management code layer may also have a significant
impact on architectural decisions. Newer major code
releases from database vendors typically contain a mix
of high-level algorithmic changes and lower-level
performance optimizations, as well as new functional-
ity, all of which can affect processor and memory
system behavior. An awareness of the sensitivity of
performance metrics to such effects is critical when
extrapolating the results of earlier studies [1, 2, 3, 14]
that used previous generations of DBMS software.

To evaluate such effects, we repeated the above
Debit-Credit workload experiments using Oracle
DBMS version 7.1.3 (Oracle7), a major code release
preceding the Oracle version 8.0.4 (Oracle8) used
above. Table 5summarizes the main cache hierarchy
differences that we observed.

Overall, memory behavior in the higher levels of
the cache hierarchy improves noticeably in Oracle8.
The most dramatic improvement is seen in the 21164’s
8KB Dcache, where the miss rate is halved with
Oracle8. Our simulation results (not shown here)
indicate that first-level cache miss rates improve by
more than 20% across a range of cache sizes. Despite
this reduction of misses in the higher levels of the
cache hierarchy, there is a slight increase in the overall
Bcache miss rate. On the positive side however, the
fraction of dirty misses is also reduced by 27% in
Oracle8 which can further improve scalability of the
software. Considering L2 cache sizes and associativi-
ties, Oracle7 shows exactly the same trends as those
depicted in Figure 3 for Oracle8. However, Oracle8
benefits more from higher associativities than
Oracle7.Even though the memory system behavior is

clearly different across the two versions of Oracle, we
find that the architectural experiments presented in
Sections 4.3-4.5 exhibit virtually identical trends
across these two versions. In comparison to a single-
issue in-order execution processor, a four-issue, out-
of-order processor improved the performance of DC
by factors of 1.32x and 1.36x on Oracle7 and Oracle8,
respectively. The slight improvement in the latter can
be attributed to Oracle8’s lower primary cache miss
rates. The only significant difference in the results of
the chip-level integration experiments occurred for a
chip with an integrated L2 and MC. As described, this
design point leads to a reduced dirty miss latency, but
an increased two-hop latency. Since the number of
dirty misses decreases and the number of two-hop
misses increases in Oracle8, DC performance showed
less benefits from this chip configuration than with
Oracle7. Finally, a CMP architecture improved perfor-
mance over an integrated, out-of-order architecture by
similar factors of 2.94x and 2.96x on Oracle7 and
Oracle8, respectively. Again, the slight performance
differences can be attributed to the better primary
cache performance in Oracle8.

It is important to mention that a variety of other
factors not considered in this paper can also affect the
behavior of the workload. For instance, profile-based
code layout optimizations have been shown to improve
instruction cache performance of transaction process-
ing workloads by up to 50%, and overall execution
time by about 25% [15]. The potential of such
techniques should be understood by architects before
hardware solutions are evaluated.

In summary, all major architectural trends
remained surprisingly consistent across the two
workloads and across two generations of DBMS code,
even though noticeable differences were observed in
memory hierarchy parameters.

Oracle7 Oracle8 Improvement
CPI 11.8 8.5 28.0%
Miss Rate Icache (global) 18.4% 13.6% 26.1%

Dcache (global) 42.1% 22.2% 47.3%
Scache (global) 16.6% 7.5% 54.8%
Bcache (global) 1.5% 1.6% -6.7%
Scache (local) 37.8% 32.3% 14.6%
Bcache (local) 12.7% 21.4% -68.5%

Dirty Miss Fraction 24.5% 17.8% 27.3%
Table 5: Improvements in Debit-Credit performance over one generation of
DBMS software (measurements on a 21164 system).

5 Discussion and Related Work
Although many architectural studies still use scientific/
engineering benchmark suites such as SPEC or
SPLASH, several more recent studies have used trans-
action processing workloads. The majority of these
studies use a simpler workload, modeled after TPC-B
or earlier versions of Debit-Credit workloads [1, 2, 3,
4, 8, 13, 14, 16]. A few studies have started to use
TPC-C or workloads modeled after it [5, 6, 7, 11, 12].
Overall, the studies using these two classes of
workloads have led to similar conclusions: high
frequency of “unpredictable” branches, large memory
stall component for both instructions and data, and
significant communication misses.

To the best of our knowledge, this work is first
detailed side-by-side study of these two workloads
across a wide range of architectural choices and with
two generations of a commercial database engine.
Maynard et al. [10] is the only study that we are aware
of that analyzes both the Debit-Credit (TPC-A) and
Order-Entry (TPC-C) workloads. Their results show
nearly identical branch behavior and operating system
activity for TPC-A and TPC-C, as well as identical
trends for various cache parameters. They also show
higher L2 miss rates for the simpler Debit-Credit
compared to Order-Entry, a behavior we also observed.
There are many differences between Maynard’s study
and our work. Maynard’s study focuses on contrasting
technical and commercial workloads in general, while
our study provides a detailed comparison of two
specific commercial workloads. Furthermore, our
study uses a modern commercial database engine
running on multiprocessors, while Maynard’s study
uses uniprocessor traces from an older generation
engine. Finally, we use scaled down versions of these
workloads, which allows us to use both actual
hardware runs and full system simulations.

While we study these workloads in the context of
a single commercial database engine, other papers that
have used different commercial database engines
indicate similar overall application behavior for trans-
action processing workloads [6, 7, 10, 16]. Our study
shows clear differences in two generations of the same
database engine. It would also certainly be interesting
to study the effect of different database engines with
respect to architectural evaluations of these workloads.

6 Concluding Remarks
With the growing dominance of commercial applica-
tions in the multiprocessor server market, a large
number of recent studies have focused on characteriz-
ing and improving the performance of challenging
transaction processing workloads. Many of these
studies have opted to use TPC-B instead of the TPC-C

workload due to TPC-B’s simpler set up and tuning
requirements. However, due to the Transaction
Processing Performance Council’s decision in the mid-
90’s to declare the TPC-B obsolete as a benchmark in
favor of TPC-C, some have questioned the validity of
the results of previous studies that are based on TPC-
B. This paper sheds light on the above issue by provid-
ing a detailed comparison of these two workloads.

Our comparison study is based on full system
simulations and actual runs of the debit-credit
(modeled after TPC-B) and order-entry (modeled after
TPC-C) workloads. We indeed observe that the two
workloads exhibit significantly different behavior with
respect to certain processor and cache performance
metrics. For example, the debit-credit workload exhib-
its a CPI (cycles-per-instruction) of 8.5 on our
AlphaServer 8400 compared to a CPI of 5.3 for the
order-entry workload. Similarly, the communication
behavior of the two workloads is somewhat different
with the debit-credit workload exhibiting a dirty miss
frequency of about 17.8% compared to 9.6% for order-
entry. Surprisingly, these dramatic differences do not
seem to surface as visibly as one would expect when
we study the overall behavior of the two workloads
across a range of architectural choices.

Our simulation results for the impact of out-of-
order processors show an improvement of 1.35x
(debit-credit) and 1.47x (order-entry) over an in-order
processor for the two workloads. Similarly, the overall
impact of aggressive chip-level integration is 1.36
times for the debit-credit workload, which is slightly
higher than the 1.23 times for order-entry. Finally, the
impact of chip multiprocessing is virtually identical for
the two workloads, with a design such as Piranha
providing a benefit of ~3x over an aggressive next-
generation out-of-order processor. Some of these
similarities, especially in the case of chip multipro-
cessing, arise due to subtle effects that would be diffi-
cult to predict without doing actual experiments with
both workloads. Overall, these results illustrate the
surprisingly similar performance behavior of the two
workloads across a wide range of architectural choices.
Furthermore, we observe that the above results remain
fundamentally unchanged across different generations
of the underlying database management software.

The reasoning behind the decision to declare TPC-
B obsolete as a benchmark is not necessarily relevant
to the merits of this workload for studying the proces-
sor and memory system performance of transaction
processing servers. For example, one of the main
reasons for this decision was that TPC-B, which was
conceived as a database stress test, did not encompass
the entire system (e.g., user terminals and network
connections) and allowed server vendors to eschew the
cost and performance issues of these other components
in their benchmarks. Interestingly, these benchmarks

were developed in an era when storage and network
behavior were the dominant performance factors for
transaction processing, while today the most important
factor is memory system behavior. Since it is widely
acknowledged that actual customer database applica-
tions typically exhibit poorer memory system behavior
compared to TPC-C, the more stressful TPC-B
workload may actually play a positive role by pushing
architects to design better performing systems for
customer workloads. And as we have shown, these two
workloads do not seem to lead to radically different
trade-offs on general architectural choices.

Acknowledgments
We thank Ravishankar Mosur for reviewing this paper.

References
[1] L. A. Barroso, K. Gharachorloo, A. Nowatzyk, and B.

Verghese. Impact of Chip-Level Integration on Perfor-
mance of OLTP Workloads. 6th International Sympo-
sium on High-Performance Computer Architecture,
January 2000.

[2] L. A. Barroso, K. Gharachorloo, and E. Bugnion.
Memory System Characterization of Commercial
Workloads. 25th Annual International Symposium on
Computer Architecture, pages 3-14, June 1998.

[3] L.A. Barroso, K. Gharachorloo, R. McNamara, A. No-
watzyk, S. Qadeer, B. Sano, S. Smith, R. Stets, and B.
Verghese. Piranha: A Scalable Architecture Based on
Single-Chip Multiprocessing. 27th Annual Internation-
al Symposium on Computer Architecture, pages 282-
293, June 2000.

[4] Z. Cvetanovic and D. Bhandarkar. Characterization of
Alpha AXP performance using TP and SPEC work-
loads. 21st Annual International Symposium on Com-
puter Architecture, pages 60–70, April 1994.

[5] Z. Cvetanovic and D. Donaldson. AlphaServer 4100
Performance Characterization. Digital Technical Jour-
nal, 8(4), pages 3-20, 1996.

[6] R. J. Eickemeyer, R. E. Johnson, S. R. Kunkel, M. S.
Squillante, and S. Liu. Evaluation of multithreaded un-
iprocessors for commercial application environments.
23rd Annual International Symposium on Computer
Architecture, pages 203–212, May 1996.

[7] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael,
and W. E. Baker. Performance Characterization of the
Quad Pentium Pro SMP Using OLTP Workloads. 25th
Annual International Symposium on Computer Archi-
tecture, pages 15-26, June 1998.

[8] J. Lo, L. A. Barroso, S. Eggers, K. Gharachorloo, H.
Levy, and S. Parekh. An Analysis of Database Work-
load Performance on Simultaneous Multithreaded Pro-
cessors. 25th Annual International Symposium on
Computer Architecture, June 1998.

[9] T. Lovett and R. Clapp. STiNG: A CC-NUMA Com-
puter System for the Commercial Marketplace. 23rd
Annual International Symposium on Computer Archi-
tecture, pages 308-317, May, 1996.

[10] A. M. G. Maynard, C. M. Donnelly, and B. R. Olsze-
wski. Contrasting characteristics and cache perfor-
mance of technical and multi-user commercial
workloads. 6th International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems, pages 145–156, October 1994.

[11] M. Martin, D. Sorin, A. Ailamaki, A. Alameldeen, R.
Dickson, C. Mauer, K. Moore, M. Plakal, M. Hill, D.
Wood. Timestamp Snooping: An Approach for Ex-
tending SMPs. 9th International Conference on Archi-
tectural Support for Programming Languages and
Operating Systems, pages 25-36, November 2000.

[12] A. Nanda, K. Mak, K. Sugavanam, R. Sahoo, V.
Soundararajan, and T. Smith. MemorIES: A Program-
mable, Real-Time Hardware Emulation Tool for Mul-
tiprocessor Server Design. 9th International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 37-48, No-
vember 2000.

[13] S. E. Perl and R. L. Sites. Studies of windows NT per-
formance using dynamic execution traces. 2nd Sympo-
sium on Operating System Design and Implementation,
pages 169–184, October 1996.

[14] P. Ranganathan, K. Gharachorloo, S. Adve, and L. A.
Barroso. Performance of Database Workloads on
Shared- Memory Systems with Out-of-Order Proces-
sors. 8th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS VIII), pages 307-318, October 1998.

[15] A. Ramirez, L.A. Barroso, K. Gharachorloo, R. Cohn,
J. Larriba-Pey, P.G. Lowney, and M. Valero. Code
Layout Optimizations for Transaction Processing
Workloads. 28th Annual International Symposium on
Computer Architecture, pages 155-166, June, 2001.

[16] M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel,
and A. Gupta. The impact of architectural trends on op-
erating system performance. 15th ACM Symposium on
Operating System Principles, December 1995.

[17] M. Rosenblum, E. Bugnion, S. Herrod, and Scott De-
vine. Using the SimOS machine simulator to study
complex computer systems. ACM Transactions on
Modeling and Computer Simulation, Vol 7, No. 1, pag-
es 78-103, January 1997.

[18] R. L. Sites and R. T. Witek. Alpha Architecture Refer-
ence Manual (third edition). Digital Press, 1998.

[19] Transaction Processing Performance Council web site.
http://www.tpc.org.

[20] Transaction Processing Performance Council. TPC
Benchmark B Standard Specification Revision 2.0.
June 1994.

[21] Transaction Processing Performance Council. TPC
Benchmark C Standard Specification Revision 3.5. Oc-
tober 1999.

