Invited paper presented at the 2nd Workshop on Complexity-Effective Design, Goteborg, Sweden, June 2001

Managing Complexity in the Piranha Server-Class Processor Design

Luiz André Barroso, K ourosh Gharachorloo, Mosur Ravishankar and Robert Stets

Western Research Laboratory
Compaq Computer Corporation

Palo Alto, CA 94301

Abstract

High-end microprocessor designs have recently been
incorporating increasingly advanced features, such as
larger issue width and speculative out-of-order execution,
which are targeted at further extracting instruction-level
parallelism from programs. The added design complexity
introduced by such mechanisms has led to an alarming
increase in design cost and time-to-market for next
generation designs. Although these mechanisms have
improved performance of some applications, many
important commercial workloads, such as online
transaction processing, have not benefited significantly
from them.

In response to these trends, the Piranha project set out
to address commercial workload performance
requirements while managing overall project complexity.
In this paper, we discuss the Piranha architecture and the
project’'s novel design methodology, which together
enabled the design to be brought to the point of a physical
prototype by a team of less than 20 people working for
little over a year.

1. Introduction

Recent trends in high-end processor design have been
towards aggressively exploiting instruction level
parallelism (ILP), largely by increasing issue width and
implementing speculative out-of-order execution. Such
trends have benefited some applications, such as those
modeled by the SPEC benchmarks [15], but at the cost of
significant additional design complexity. While the added
complexity naturally increased the architectural and logic
design time, its most serious impact has been felt in the
verification and physical design phases, which aready
constitute the most time intensive tasks in such efforts. The
additional operational complexity of the new designs
directly drives additional verification requirements, and the
associated physical implementations are larger and more
complicated, thus increasing the physical design
challenges.

Interestingly, not all applications benefit equally from
these complicated designs. Recent research [2, 3, 4, 12]
shows that complicated mechanisms for exploiting ILP
may have limited benefits in important commercial
workloads such as online transaction processing (OLTP).

OLTP applications are dominated by short-lived
transactions that are memory intensive and exhibit little
instruction-level paralelism. These applications do,
however, have abundant thread level parallelism.

In the Piranha project [2], we sought to build a
processor that would provide superior performance for
commercia workloads with project complexity appropriate
for tens of people, rather than the hundreds of people
typica in today's commercial processor projects.
Complexity is managed in Piranha both through
architectural choices and design methodology features.
Piranha uses a novel architecture, a chip multiprocessor
(CMP) based on eight single-issue, in-order processor
cores, that simultaneously addresses both commercial
workload performance requirements and project
complexity goas. The relatively simple processor cores
sacrifice  single-threaded performance, however the
collection of cores, tied together by a tightly coupled
memory hierarchy, provides excellent multi-threaded
performance. The relatively simple cores also help manage
verification overhead, and inherent module replication in
the architecture, e.g. the processors cores and their caches,
reduces the count and size of unique modules in the
physica design phase. Our system architecture further
addresses project complexity by reusing logic modules in
processing and 1/0O nodes, thus reducing the amount of
unique 1/O path circuitry that needs to be designed,
implemented, and tested.

In addition to architecting for lower design complexity,
we further tackle design and verification complexity
through our design methodology. We have developed a
novel C++-based ASIC design flow that drives a very high
performance logic simulator and industry standard ASIC
design tools. The high performance simulator enables a
very efficient test plan based on testing of the integrated
chip, while the ASIC methodology automates much of the
low level physical design work and provides a path to
fabrication by a third party. Together, this methodology
and the architectural choices outlined above allowed us to
very effectively manage overall project complexity without
compromising on performance with respect to
contemporary commercial processor designs.

After over a year of design, verification, and
implementation work, the Piranha project was on schedule
to deliver itsfirst physical prototype in mere months, when
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FIGURE 1. Normalized execution time
breakdown of an OLTP workload.

budget constraints prevented us from going ahead with
fabrication.

In this paper, we will discuss the Piranha project and
our efforts to manage overall complexity. The following
section will discuss the Piranha architecture and its
motivations. Section 3 discusses the project’'s logic
verification phase, including the ways that our
methodology helped manage verification overhead.
Section 4 describes the obstacles encountered in building a
high performance processor using an ASIC process.
Finally, Section 5 summarizes the most relevant aspects of
our experience with Piranha.

2. Architecture

The Piranha architecture was driven by detailed and
extensive performance analysis of database workloads.
This analysis shed light on the shortcomings of
conventional processor architectures when running OLTP
workloads and led to alternative architectural ideas. Our
choice of architectural features obviously has a profound
effect on the verification and physical design overhead. In
the remainder of this section, we describe the aspects of
OLTP workloads that are most relevant to processor and
memory system design. We next discuss the Piranha
architecture in more detail, focusing on the important
decisions that balance performance requirements versus
project complexity.

2.1 OLTP Performance Characterization
Current database workloads are dominated by processor

and memory system performance issues. Recent studies [2,
3, 4, 12] have shown that OLTP workloads exhibit little

instruction level parallelism and are largely bound by
memory latency.

Figure 1 illustrates the execution time breakdown of an
OLTP workload that models the industry standard TPC-B
benchmark [16]. Thisfigure is based on an earlier study [4]
that examined the memory system performance of the
same OL TP workload running on Oracle database software
and an AlphaServer 8400 server with eight Alpha 21164
processors. In the figure, execution time is split into cycles
spent in single and double instruction issue, TLB misses,
replay traps, branch mispredictions, memory barriers,
secondary cache hits, board cache hits, memory accesses
and dirty misses. As can be seen from the figure, 78% of
the execution time is spent stalled on the memory system.
With the low percentage of cycles where multiple
instructions could be issued and the high memory stall
time, it became clear that the current processor trends were
not well addressing OLTP performance reguirements.
Subsequent studies by our group and others confirmed this
observation [10, 12]. Fortunately, other processor design
trends, which do not significantly increase complexity, do
improve OLTP performance. The Alpha 21364 [1]
processor takes advantage of increasing transistor density
to integrate a second-level cache, a memory controller,
cache coherence engines, and a router on to the processor
chip. The result is a reduction in chip boundary crossings
and, correspondingly, lower memory latencies and higher
bandwidths. A simulation-based study [3] showed that
such integrated design outperformed a comparable system
based on the conventional design by afactor of 1.5x.

Another recent architectural technique that shows
promise for improving OL TP performance is Simultaneous
Multithreading (SMT) [6]. While SMT addresses
commercial workload requirements by exploiting thread
level parallelism, it does not address the issue of design
complexity asit based on avery complex processor core.

In Piranha, we chose to use a chip multiprocessing as an
dternative for effectively exploiting the abundant thread-
level paralelism in OLTP workloads. The following
section discusses how our design addresses both
performance and complexity simultaneously.

2.2 Piranha Architecture

In this discussion, we limit ourselves to describe only
the features of the Piranha architecture that concern design
complexity issues. A more detailed description of the
architecture is available in an earlier paper [2]. Figure 2
shows a block diagram of a Piranha processing node. The
node consists of eight Alpha processor cores (CPU), each
of which has its own private L1 instruction (iL1) and data
(dL1) caches. The L1 caches are connected to the rest of
the system via the Intra-Chip Switch (ICS). A logicaly
shared L2 cacheis connected to the ICS. The L2 isactually



£

B

|

Interconnet Links
—— R — —

FIGURE 2. Block diagram of a Piranha
processing node.

split into eight banks, with a particular bank selected by the
low order three bits of the memory block address. Each L2
bank is connected directly to its own Memory Controller
(MC), which in turn connects to its own Double-Data- Rate
SDRAM array.

The Home and Remote Engines, collectively called the
Coherence Engines, are responsible for handling coherence
operations for memory blocks whose home node is the
local node or a remote node, respectively. Both of these
modules are connected to the ICS, to communicate with
the local modules, and to the Input and Output Queues, to
communicate with other nodes. The Input and Output
Queues both interface to the Router, which in our initial
prototype supports a simple ring-based topology.

Finally, the System Controller is responsible for
maintenance-related functions such as initialization,
interrupt distribution, and exception handling.

The Piranha design includes a very optimized memory
hierarchy. In order to maintain cache coherence, Piranha
uses a two-level scheme. At the chip level, the L2 is
responsible for maintaining coherence within a node. The
L2 maintains a set of duplicate L1 tags, and uses this
information like a directory to implement an invalidation-
based protocol. At the system level, coherence across
nodes is maintained by the Home and Remote Engines.
This inter-node protocol is aso an invalidation-based
directory protocol. This directory is stored in “extra’ main
memory ECC bits, which are freed up by calculating ECC
across a memory chunk that is larger than normal. Overall
cache coherence is enforced through cooperation between
the L2 cache and the coherence engines.

Figure 3 is a block diagram of an 1/0O node, the second

piece of afull Piranha system. The 1/O node is actually a
scaled-down version of the compute node, with one
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FIGURE 3. Block diagram of a Piranhal/O node.

processor core instead of eight. The I/O node also has a
special PCI Interface (PCl) module that integrates the PCI
subsystem into the memory hierarchy. Piranha treats the I/
O subsystem as a first class citizen of the memory
hierarchy, and as can be seen, the subsystem interfaces
directly to a standard L1 data cache. This design helps to
manage project complexity, since both verification and
physica design overhead are reduced because 1/0O
subsystem introduces only one new module: the PCI
Interface. Also, as the 1/O node is truly a scaled-down
compute node, it can serve as an excellent prototype
vehicle. Our plan was to focus our verification efforts on
the processing node since it provided a more stenuous test
of the coherence mechanisms, but to use the 1/0 node as
our first physical prototype. This approach is reasonable
since the processing and I/O nodes share so many basic
components.

Architectural Decisions. Given the behavior of our target
workload, we were able to drasticaly reduce design
complexity by abandoning ILP techniques, and using
simple single-issue, in-order processor cores. Another
significant simplification was the use of blocking L1
caches. This simplified not only the L1 but the overall
memory system design by reducing buffering requirements
and making it simpler to keep track of memory transactions
throughout the system. The use of blocking L1 caches
resulted in only a small performance penalty given that
commercial workloads tend to have very few outstanding
misses at a time, even when using aggressive out-of-order
cores [12]. Further simplification of the core was obtained
by not implementing multimediainstruction set extensions,
and by employing a straightforward floating-point unit.
Server-class commercial workloads have no use for
multimedia instruction set extensions and rarely require
any floating-point computation.



The general approach of using simple modules and
replicating them was employed not only in the processor
cores, but throughout the design. The L2 cache, although
logically a single shared cache, is implemented as eight
separate modules. The logical L2 must handle concurrent
local requests from up to sixteen L1 caches and the
Coherence Engines. Rather than designing a complicated,
monolithic L2 module capable of handling a large number
of concurrent requests, we instead broke the L2 module
into a simpler design capable of fewer concurrent requests,
and then replicated this module to provide the necessary
throughput. Since L2 requests can be handled
independently based on the target address, this simpler
design incurred very little logic overhead, and therefore
served to reduce the verification and physical design
reguirements.

Replication is again used in the design of the Coherence
Engines. The Home and Remote Engines are roughly the
same design except for afew isolated differences dueto the
Home Engine' s need to manipulate directory entries. There
is however another aspect of the Coherence Engine design
that arguably had a more profound effect on project
complexity. Rather than embedding the entire protocol
implementation in the hardware, the Coherence Engine
was designed as a programmable engine, operating on a
custom microcode. This design decision forces the
separation of the protocol mechanisms, which can be
represented as a set of discrete operations, from the
protocol policy, which can be represented by a set of inter-
related, complicated state machines. The former is much
easier to express and build into hardware, while the latter is
more error prone and is most easily expressed and
maintained at a higher level in the microcode. While a
programmable engine is generally dower than a
corresponding hard-wired one, our design included several
optimizations that effectively reduced the gap to a point
where the workload performance was not significantly
impacted.

A final important aspect of our design is very
straightforward, yet requires a good amount of design
discipline to enforce. The module interconnections in the
above diagrams are the only interconnections in our
implementation. By design, we required that each module
have avery strictly defined interface and that all outputs of
modules were generated directly from flip-flops. This
choice helps manage verification and physical design
complexity by making modules easier to isolate and by
limiting wire lengths mainly to the enclosing modules.

To summarize, the Piranha architecture held both
performance and complexity as primary design criteria.
The general themes underlying the design choices were to
leverage replication and re-use and to pay strict attention to
level of complexity to be placed in hardware. It was
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FIGURE 4. Normalized execution time breakdown of a
4-issue, speculative out-of-order, 1GHz processor, asingle
400Mhz Piranha chip with 8 single-issue, in-order
processor cores, and a single 1.25GHz Piranha chip.

possible to make informed design trade-offs because of the
decision to focus on a single, well understood workload.

Piranha Performance Evaluation. In the remainder of
this section, we will briefly highlight the simulation results
of the Piranha architecture. An earlier paper [2] provides a
much more complete treatment. The experiments were
performed using the SImOS-Alpha simulator, which is an
Alpha port of the SimOS [13] simulator. The workload
under simulation is again based on the TPC-B benchmark
running on an Oracle database.

Figure 4 shows the execution time breakdown of a next
generation conventional processor design and two Piranha-
based systems. Execution time is broken down into CPU
busy time, time spent on accesses that hit in the L2 cache
(L2 hit), and time spent on accesses that miss in the L2
cache (L2 miss). The conventional processor design, called
00O in the figure, is a 4-issue, speculative out-of-order
processor clocked at 1GHz. The P8 entry in the figure
represents a single Piranha chip (with eight processor
cores) running at 400MHz. This clock speed is the target
speed for the ASIC implementation of our chip. The P8F
entry is again a single Piranha chip, but this time built with
afull custom design process and clocked at 1.25GHz. This
clock speed is estimated on current processor clock rates
and the perceived difference in complexity between two
designs. One should note that this is actually a per-chip
comparison -- the conventional processor design has only
one complex processor core, while the Piranha design has
eight simple cores.

As can be seen in the figure, the Piranha ASIC and full
custom designs outperform the conventional processor
design by approximate factors of 2x and 5x, respectively.
The performance improvement is driven by the fact that
Piranha can better exploit the abundant thread level



paralelism. As one thread stalls on a cache miss, other
threads on other processor cores can be making progress.
Overdl, the Piranha architecture addresses OLTP
performance requirements so well that even a relatively
slow clock speed offers potential for dramatic performance
improvement.

3. Logic Verification

In planning our verification strategy, we believed the
memory hierarchy, specifically the cache coherence
mechanism, would be the most time consuming
verification task. The memory hierarchy includes most of
the modules of the chip (the L1s, the L2, the Memory
Controller, the Coherence Engines, and the network 1/0
modules), and its actions depend heavily on the global
system state, namely the contents of the various caches and
the temporal combination of in-flight transactions. To be
robust, a design must be tested over a multitude of subtle
modul e interactions and memory access races.

The Importance of Simulation Performance. On top of
this inherent verification complexity, our memory
hierarchy design was large and so would not simulate
efficiently in typical Verilog-based logic simulation
environments. Verilog uses an event-driven paradigm to
model the implicit parallelism of hardware. Perhaps due to
this paradigm, even the best-of-class Verilog simulators
are known to run slowly on most large designs. Designers
compensate for this lack of simulation speed by relying
heavily on isolated sub-unit testing. This approach
involves constructing bus functional models (BFMs) to act
as test harnesses around isolated units. The required effort
to build, validate, and maintain these BFMs, along with the
effort required to coordinate system-wide testing at an
isolated sub-unit level, greatly increases the overhead and
complexity of a design’s verification. In our particular
case, an isolated sub-unit testing approach would have
been extremely difficult, error prone, and labor intensive
given the complexity of the interactions among the
modules that make up our memory hierarchy.

We believed our test plan had to focus on testing the
fully integrated memory hierarchy, and that a cycle-based
simulator could provide the necessary level of
performance. Cycle-based simulators leverage the fact that
in synchronous designs, such as ours, signal transitions
occur only at well defined points, such asthetransition of a
clock or a few asynchronous signals, e.g. Reset. A cycle-
based simulator evaluates signal logic only at these well
defined points, thereby eliminating the need for costly
event-driven mechanisms. We wrote our simulator in C++
and used C++ to model cycle-accurate, Register Transfer
Level (RTL) models of our memory hierarchy modules. To
further simulation efficiency, we separated the simulation

of the memory hierarchy and the Alpha processor core, as
the testing requirements of each of these logical modules
are distinct, and importantly the design size and
verification requirements of the Alpha Core were smaller
relative to the memory hierarchy.

Our environment consists logically of two simulators:
the System and the Alpha Core. The former contains the
entire memory hierarchy, and hence basically all of our
system, and was fully implemented in C++. The Alpha
Core simulator, on the other hand, is Verilog-based and it
leverages a number of standard components used in the
development of commercial Alpha processors. The rest of
the section discusses these two simulators in further detail,
and also the viability of using C++ as a hardware
description language. Once the components of our
simulation environment have been described, the section
will conclude with an overview of our test plan.

3.1 System Simulation and Methodology

Driven by the need for high performance, our system
simulation employed a novel methodology based on a C++
RTL model of the design. These models, along with some
coding conventions and library support, allowed usto build
a very fast logic smulator. We then employed a machine
C++-to-Verilog tranglator to provide a bridge to industry-
standard ASIC synthesis and physical design tools.

Next, we will discuss our approach to using C++ as a
hardware description language (HDL), followed by an
overview of our C++-to-Verilog translation process.
Finally, we will discuss the full system simulator
environment.

C++ asaHardware Description Language. C++ is an
inherently sequential language, and as such may not seem
to be a good choice to model the implicit parallelism in
hardware. However with some insight into the
synchronous hardware designs, C++ can be used as very
reasonable HDL. The key insight is that cycle-based
simulation eliminates the need for event-based language
constructs, which are the fundamental difference between
C++ and Verilog. C++ can be used to construct a cycle-
based simulator where each moduleis simply modeled as a
function. Still, however, the sequential nature of C++ can
cause problems inside of functions and across the inputs
and outputs of functions. Without special care, a
synchronous variable could be updated inside a function to
its next-state value, and then read, in error, later in the
function or another module’ s function.

To solve this problem, we required that all inter-module
synchronous variables were modeled by a specia “Signal”
classthat overrides all of its access and assignment classes,
and then implements a type of delayed assignment. Any
assignment to a variable of this class is buffered internally



and then takes effect only at the next clock transition. Asa
lower overhead alternative for intra-module synchronous
signals, we required all assignments to be done to a
manually constructed shadow variable, by convention
named by the target variable name appended with “_ns”.
At the end of the function, all _ns variables are copied into
their counterparts.

The Signal class and our _ns convention enabled us to
build an efficient cycle-based simulator with a manageable
degree of programming complexity. We also decided that
our modules would be coded at a cycle-accurate, structural
RTL level. We believed this level of specification would
facilitate our origina plan to perform manua Verilog
trandlations, but as it turned out, the choice actualy
enabled a machine tranglation approach.

Machine C++-to-Verilog Translation. Our initia plan
was to manually trandate C++ to Verilog after the C++
models had become stable and entered a long test phase.
Our module representations, however, grew larger (~5,000
to 10,000 lines of C++ code) than expected. Consequently
the feasibility of maintaining separate C++ and Verilog
code bases became a concern. We chose instead to use
CLevel's System Compiler [5] to perform machine C++-
to-Verilog trandation.

The System Compiler is a self-contained tool that
tranglates standard ANSI C/C++ to Verilog. The tool's
major coding requirement is that in each module function,
the asynchronous logic is separated from the synchronous
logic. Fortunately, by virtue of our Signal class and _ns
convention, our code already adhered to this convention. It
was therefore a relatively straightforward process to
integrate the tool into our flow, even though our C++ RTL
had been devel oped without considering the tool.

The PS1 Simulation Environment. Our C++-based
design methodology [9] was implemented in the Piranha
Simulator (PS1) environment. The tool flow of this
environment is shown in Figure 5. The entire flow is based
on the C++ RTL models of our design modules. These
models are compiled and linked with some support
routines to build the PS1 logic simulator. The resulting
simulator is a factor of 50 times faster than a comparable
Verilog-based simulator [9]. As a bridge to the physical
design tools, the RTL models can be passed through the
CLevel tool to create corresponding Verilog versions. In
order to ensure these models are suitable for physical
design, they must be validated against the master C++
models. The PS1 environment includes a specia version of
the simulator suitable for this task.

The PS1V simulator can be built with an arbitrary mix
of C++ and Verilog versions of the modules. The simulator
is capable of running either the C++ or the Verilog version

cxx: C++ compiler
CLevel: C++-to-
Verilog Translator

Verilog
Models

Physical
Design

FIGURE 5. The PS1 simulation environment. The
C++ RTL models drive a high performance logic
simulator (PS1), amixed C++ and Verilog simulator
(PS1V), and industry standard physical design tools

PS1 PS1V

of a module, or it can co-simulate both versions of a
module. The co-simulation facility automatically compares
module outputs on a cycle-by-cycle basis in order to
establish correspondence between the two versions. We
validated the Verilog trandlations using co-simulation.

As aluded to earlier, the PS1 environment is intended
for verification of the memory hierarchy implementation.
As such, PS1 accurately models the entire system, except
for the Alpha Core. The Alpha Core contains a large
amount of functionality that is largely de-coupled from the
memory hierarchy. PS1 focuses its simulation cycles on
the memory hierarchy, and replaces the Alpha Core model
with a low overhead interpreter driven by a custom test
language. The interpreted test |language had support for co-
routines and the ability to monitor internal signals in the
memory hierarchy. We used these capabilities to construct
self-checking memory access routines, which were the
building blocks of our memory hierarchy tests.

In summary, the Piranha memory hierarchy follows a
novel C++-based ASIC design methodology that enables a
high performance logic simulator and supports the use of
industry standard Verilog-based physical design tools, all
while being driven from a single C++ code base. The high
performance simulator enables a test plan based on
integrated testing that considerably reduces the overhead in
testing our memory hierarchy, the critical path of our
verification plan.

3.2 AlphaCore Simulation

The size of the Alpha Core design was small enough to
simulate efficiently in Verilog, and it could be verified
with only limited memory hierarchy support. We therefore
decided to follow an established path by implementing the
Alpha Core RTL model in Verilog and by using a separate
simulation environment that heavily leveraged tools from
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FIGURE 6. Alpha Core simulation environment.
Stimulus files drive our Alpha Core Verilog model,
with the internal state compared against areference
model on acycle by cycle basis.

the Alpha 21364 verification effort.

The components of our Alpha Core simulator are shown
in Figure6. The simulator is driven by a stimulus file
consisting of valid Alpha instructions. This file can either
be manually constructed or automatically constructed by
STIM-P, a special pseudo-random test generator from the
Alpha 21364 project. The stimulus drives both our Alpha
Verilog model and a special Alpha Reference model built
by the Alpha 21364 team. As the figure shows, the Alpha
Verilog model was backed by our C++ model of the
memory hierarchy.

The Alpha Reference model is a high level, behavioral
model of an Alpha processor. It executes al instructionsin
a single cycle and keeps track of internal state such as
registers, status flags, TLBs, caches, and memory. We use
the Reference model to check the execution of our Alpha
Core implementation. As each instruction retires in our
Verilog model, we compare the internal state of the two
models and immediately flag any discrepancies.

The design of this simulator allowed us to leverage self-
checking, pseudo-random tests to help reduce testing
overhead. Aswe will discussin the next section on our test
plan, we also followed this strategy in our testing of the
memory hierarchy.

3.3 Test Plan and Current Status

In planning to efficiently manage verification overhead,
the key strategies of our test plan were to focus on testing
the fully integrated memory hierarchy and to heavily
leverage self-checking, pseudo-random tests in our
verification effort.

Memory Hierarchy Testing. The verification of the
memory hierarchy in particular depended on pseudo-
random tests. Our test plan split this verification task into
three distinct phases: initial focused tests, continuous
pseudo-random stress tests, and final coverage-driven

focused tests. The initial focused tests were a series of
simple tests lasting in total 1-2 weeks and intended to
debug the basic operations of each module. The continuous
pseudo-random stress tests were a set of self-checking tests
that performed memory accesses to a small range of
memory blocks, triggering a large amount of false sharing
communication throughout the system. We intended this
phase to constitute the majority of our verification time,
anywhere from 8-12 months. The duration of the third
phase of coverage-driven focused tests depended on the
effectiveness of the pseudo-random test phase.

By the time the project ended, the system had been in
pseudo-random stress tests for roughly five months. The
stress test was running continuously on a cluster of
approximately 23 machines (13 server-class machines and
10 desktop machines) with a total of 51 processors. The
tests exercised approximately 80% of our design and our
bug rate was relatively low at less than ten per month.
From this information, we estimated that the system
verification was on schedule and had a few more months of
stress test before finishing this phase. Verification of the
Alpha Core however had been proceeding even faster and
was hearing completion.

Alpha Core Testing. The Alpha Core, as described above,
heavily leveraged the efforts of the Alpha 21364
verification team. We used their focused test stimuli
directly, and these tests accounted for approximately one
third of the Alpha Core test plan. The remaining two thirds
of the test plan was based on pseudo-random tests driven
by the STIM-P tool. The goal of these pseudo-random tests
was to exercise the various instructions and trap conditions
such that we could maximize the coverage of a set of
designer-specified coverage points. These coverage points
were chosen to indicate when complicated aspects of the
design had been tested. (Due to the Alpha Core's pipeline
design, line coverage is very easy to achieve, and so not a
good measurement of testing effectiveness. During the
early test phases, almost 95% of the lines were covered by
tests.)

Unlike in the memory hierarchy test plan, the focused
and pseudo-random test phases in the Alpha Core test plan
were run concurrently. Basically, as a particular focused
test was finished, the instructions under test were added to
the pseudo-random stimuli. When the project ended, we
had completed 98% of the focused tests and had been
running pseudo-random tests for 6 months. Our tests had
exercised approximately 75% of the designer-specified
coverage points. Based on this information, we estimated
that two more months were required to complete the Alpha
Core verification.



4. Physical Design

An ASIC design process offers considerabl e advantages
in managing physical design complexity, however the
advantages do have some cost. The mgjor advantage of the
approach is that software tools can be used to automate
much of the low level gate layout, and the resulting chip
layout can be easily transferred to an ASIC vendor for
fabrication. The trade-off is that the design istypically less
efficient, in speed and power, than a comparable design
achieved by manual gate layout.

In our case, the advantages of ASIC design greatly
outweighed the disadvantages. We chose to use IBM and
their Cu-11 [7] process. IBM’s ASIC foundry validates its
chip implementations through a very thorough testing
methodology. As part of this testing methodology, IBM
forbids the use of tri-state busses and also only allows
“safe” one-hot multiplexors. The restrictions are in place
because if the control logic is faulty, the output of these
physical structures is unpredictable and so physica
validation may not be possible. Unfortunately, tri-state
busses and optimized one-hot multiplexors are very useful
in high performance circuits, as they can greatly simplify
and speed up some logic. We were eventually able to use
the faster one-hot multiplexors, but not tri-state busses.
This latter issue complicated the design of the Intra-Chip
Switch by forcing more levels of logic leading into the
switch.

A variety of early design decisions had to be re-
examined given the constraints of the memory cells
available in the ASIC library. For example, we had to
reduce our target clock speed from 500MHz to 400MHz,
given the SRAM and register array access speeds. For the
same reason, we also reduced our L1 cache from a 64K, 2-
way associative design to a 32K, direct-mapped design.
This design change affected not only the access times in
L1, but also the duplicate L1 tag lookupsin the L2.

Apart from the SRAMs and register arrays, our design
aso had severa fully-associative memory structures
which, due to constraints of the ASIC methodology, were
limited to roughly 16 entries. In the case of our processor’s
branch target buffer (BTB), however, the necessary timing
limited us to only eight entries. Since our simulation
showed that aBTB of lessthan 16 entries would have little
effect on performance, we decided to drop the BTB and
simplify the physical design.

The largest impact of the limited size fully-associative
memory structures, however, was on the Trandation
Lookaside Buffer (TLB). Not surprisingly, a 16-entry
fully-associative TLB was not a valid option due to
performance concerns. We believed our only option wasto
build a four-way associative 256-entry TLB, implemented
as four separate 64-entry register arrays that could be

Module Size mm?

AlphaCore 2.1(0.3)

L1 Cache 20(5.8)

L2 Cache 2.3(9.9
Coherence Engines 1.4(1.2)

1/0 Queues 1.1(0.6)
Router 0.5(1.1)
Intra-Chip Switch 1.4 (0.0)
Memory Controller 4.8 (0.0
System Controller 1.0(0.0)
Miscellaneous 54.6 (1.0)
Tota CMP 262.6 (133.13)

Table 1: Estimated module sizes for the processing
node. Estimated memory sizes are included in
parentheses.

checked in parallel. This design also reduced the level to
which we could support Alpha granularity hints [14],
which are used to allow multiple page sizes to be used
within an address space. Fortunately, our simulations
showed this TLB design did not significantly impact our
OLTP performance.

In addition to the memory cells, we also used a PCI bus
interface’ and an SDRAM interface core from IBM's
library. These two cores handled the chip’s interface logic
to the PCI bus and SDRAM bus, respectively. We were
able to use the PCI core directly, however the SDRAM
core was wrapped by a generic memory interface that hid
the ECC calculation. As we needed to perform our own
ECC cdculation in order to store the system-level
coherence directory, we obtained access to the low-level
SDRAM interface from IBM.

Design Status. All modules, except for the System
Controller and Intra-Chip Switch, reached functioning
Verilog stage, and were undergoing timing re-designs at
the time the project was concluded. The machine
tranglation of the memory hierarchy modules produced
seemingly high quality Verilog code. When this code was
synthesized, the Router, Input and Output Queues were all
within 1ns of the target 400MHz timing. The L1, L2, and
Coherence Engines had undergone the first pass for timing
re-designs and the long paths of each module were within
2.5ns of timing.

Table 1 shows the estimated size of the modules in the

1. The PCI bus interface core handled the mechanics of the connecting to
the PCI bus. The PCI interface module in Figure 3 implemented the inter-
face between the PCI subsystem and the memory hierarchy.



processing node, along with the size of the node itself. The
Miscellaneous entry includes items such as clock and
boundary logic. The estimated maximum power
dissipation of a processing node was 44W at 400MHz and
V4g=1.5V. The power estimates for some basic Cu-11
structures were not available, so we based our estimates on
values from the earlier SA-27E [8] process.

5. Conclusions

The trend toward increasing processor complexity,
driven by the quest for further exploitation of instruction
level parallelism, has produced diminishing returns for
important server-class workloads, such as database
applications and web servers. These workloads simply do
not exhibit the potential for ILP that existsin scientific and
engineering applications. Regardless, this increased
complexity has greatly lengthened all phases of chip
design, particularly verification and physical design, in
addition to inflating team sizes and budgets to nearly
impractical levels across the industry.

In Piranha, we sought to build a processor that would
address both commercial workload performance and
project complexity. The Piranha architecture, based on
chip multiprocessing, provides an excellent platform for
commercia workloads given the abundance of thread level
paralelism available. In simulation, the Piranha
architecture, built in a conservative ASIC process, can
provide more than a 2x performance improvement over a
conventional, next-generation design. Furthermore, this
performance advantage is achieved with significant
reductions in design and verification complexity. Piranha's
CMP architecture fundamentally emphasizes replication
over monolithic complexity. Furthermore, given our
workload focus, we were able to make additional
architectural trade-offs, such as using single-issue, in-order
processor cores, that reduced project complexity without
sacrificing overall performance.

We furthered complemented the architectural decisions
with specific measures to reduce the effort incurred in the
mechanics of the verification and physical design phases.
Our most important measure was to employ a novel C++-
based ASIC design flow that enabled both a very high
performance logic simulator and the use of industry-
standard physical design tools. The high performance logic
simulator allowed us to greatly reduce verification
overhead, as it enabled a very efficient testing of the
integrated design, while the ASIC design flow, with its use
of industry-standard tools, automated much of the low
level physical design layout and provided a clear path to
fabrication.

Together, these measures helped us design a high
performance server-class processor project with alevel of

complexity appropriate for a group much smaller than that
of typical processor projects. Working for slightly more
than a year, a group of less than 20 people brought the
Piranha design to the cusp of a physical prototype. During
this period, the chip design was specified asan RTL model,
the logic design was substantially verified, and the physical
design was undergoing the necessary work to reach an
aggressive operating frequency of 400MHz using an ASIC
process.
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