
1 of 18

RPM

Hardware Emulation: A New Approach to the Rapid
Prototyping of Multiprocessors

Luiz André Barroso

RPM Project Group

Michel Dubois (PI)
Luiz André Barroso
Koray Öner
Jaeheon Jeong

Previous contributors

Krishnan Ramamurthy
Sasan Iman
Jacqueline Chame
Per Stenstrom
Massoud Pedram

2 of 18

RPM

Introduction

Scope:

•Multiprocessor system design

Features:

•memory organization
•shared-memory vs message passing
•cache and protocol design
•consistency model
•interconnection fabric
•software/hardware trade-offs

Evaluate:

•performance
•cost / complexity
•correctness / validation

FLC

SLC

MEM

NI

P

FLC

SLC

MEM

NI

P

FLC

SLC

MEM

NI

P

FLC

SLC

MEM

NI

P

FLC

SLC

MEM

NI

P

Methods:

•Software Simulation
•Prototyping
•Hardware Emulation

3 of 18

RPM

Introduction (cont.)

Software Simulation:

•relatively inexpensive
•versatile
•slow
•accuracy ?
•unable to handle real workloads (OS, system software, etc.)
•insight on actual design ?

Breadboard Prototyping:

•very expensive
•accurate
•fast
•few design points
•typically hard to observe

4 of 18

RPM

Introduction (cont.)

Hardware Emulation:

•actual implementation
•faster than software simulation
•allows the study of large applications, including operating systems
•allows the study of a large design space
•detailed monitoring
•less expensive than most prototypes

time scaling
the same hardware emulator is re-used

5 of 18

RPM

OUTLINE

• Introduction

• Software Simulation

• FPGA-based Rapid Prototyping Systems

• Hardware Emulation in RPM

• Measuring Performance

• Conclusion

6 of 18

RPM

Software Simulation

Breaking down the overhead of software simulation:

1. Overhead of simulating processor execution

2. Semantic gap

3. Need to keep a simulated clock

4. Target system speedup

7 of 18

RPM

Software Simulation (cont.)

Simulation of processor execution:

•Direct execution (Tango, WWT)
fast when target ISA is similar to host ISA
slow if instructions and private data activity is relevant
code has to be instrumented

•ISA simulation (CacheMire-2)
overhead of instruction decoding/execution

Semantic gap:

•Depends on how detailed the simulator is
•Example: CacheMire-2 8-processor SPLASH simulations

SLCacheAcess executes 210.5 instr./call
1380 to 3130 simulator instructions/target instruction
simulated

8 of 18

RPM

Software Simulation (cont.)

Handling simulated time:

•Event calendars
scheduling/context switching (61% in TangoLite)
hard to parallelize

•Activity scanning
no context switching
fixed overhead to scan for activities in every simulated
cycle
even harder to parallelize

Target system speedup:

•Simulators are typically fast on hits and slow on other events
•Example: CacheMire-2 executing MP3D for 8 Processors

Over 80% of the simulator time is spent on references
that miss

9 of 18

RPM

Software Simulation (cont.)

Parallel Software Simulation

•Makes use of existing high-performance parallel computers (WWT)
•Problem: how to preserve the order of target events ?

⇒ distribute the event list and exchange time-stamped
messages

•Conservative approach: periodic barriers (WWT)
•Optimistic approach: checkpointing/backtrack (time-warp)

10 of 18

RPM

FPGA-based Rapid Prototyping Systems

New technology: High-density in-circuit reprogrammable circuits

•13,000 gates of reprogrammable gate arrays (Xilinx X4013)
•1,024 pins Field-programmable interconnect circuits (Aptix FPICs)
•High-level design languages (VHDL)
•Improving synthesis tools

Typical configuration:

•Array of FPGAs on a board + interconnection logic + I/O

Example:

•Quickturn emulation system (RPMplus) (50 Kgates to 6 Mgates)

11 of 18

RPM

Hardware Emulation in RPM

RPM Architecture

FLC

SLC
FLC

SLC

NI

FLC

SLC

NI

P

SRAM

SRAM

DRAM

NI

P

8 Execution Processors

Host
SUN

SCSI Bus

IO
Processor

SCSI FLC

SLC
FLC

SLC

NI

FLC

SLC

NI

P

SRAM

SRAM

DRAM

NI

P SCSI FLC

SLC
FLC

SLC

NI

FLC

SLC

NI

P

SRAM

SRAM

DRAM

NI

P SCSI

FUTUREBUS+

SPARC

12 of 18

RPM

Hardware Emulation in RPM (cont.)

Making cost-effective use of emulation technology:

• Restrict reconfigurable hardware to points of interest
• FPGAs are used for the caches and memory/directory controller only
• Use of mature technology in the hardware implementation
• Controllers are clocked faster than the processors

simplify controller circuitry
avoids saturation of the controllers and interconnects
adds flexibility
extra cycles are used for performance monitoring

13 of 18

RPM

Hardware Emulation in RPM (cont.)

Main features:

•Flexibility comparable to a software simulator
❒ different cache sizes, block sizes, associativities,
replacement schemes, coherence protocols, buffering
strategies, consistency models
❒ extensions to the ISA
❒ COMAs and CC-NUMAs
❒ support for message passing
❒ almost every activity or event can be monitored

•Emulator is an actual computer
•Emulation is very close to actual implementation
•No time-stamps required. RPM timing emulation is based on

Time Scaling

14 of 18

RPM

Hardware Emulation in RPM (cont.)

Time Scaling

Every resource (interconnect, caches, memories, I/O units) is characterized by
two performance measures: latency and bandwidth

The timings of all system components can be adjusted to take as many Pclocks
in RPM as they would take in Pclocks of the target system

How it is accomplished:

• The processor is “clocked” once every 8 cycles
⇒ all controllers and data transfers are too fast (in Pclocks) with

 respect to all target systems of interest
• All controllers are artificially delayed to match the relative speed of

the target system being emulated
•A “Delay Unit” delays the sending of messages in the system bus
• Emulated I/O can be delayed by software + standard interrupt timer

15 of 18

RPM

Hardware Emulation in RPM (cont.)

Performance of RPM

RPM vs. CacheMire-2 running on a SPARCStation10

Benchmark
(#procs)

Number of
references

simulator/
target

instructions

Simulation Rate
(CacheMire)
(cycles/sec)

Speedup
(RPM/CacheMire)

MP3D (8) 18.5 M 3130 3,786 330

WATER (8) 136.5 M 1380 3,960 315

CHOLESKY (8) 79.5 M 1718 3,426 365

Slowdown Factors Between Target and RPM

Target Uniprocessor
Speed

50 MIPS 100 MIPS 200 MIPS 500 MIPS

Slowdown 40 80 160 400

16 of 18

RPM

Measuring Performance

COUNT MEMORY in each level of the memory hierarchy

•Software controlled event counting
Access only one memory location at a time

Table 1: Example for counting events in FLC: Private, Shared, Read, Write, Hit, Miss

Counter
Address

Private/
Shared

Read/
Write

Hit/
Miss Basic Events

0 0 0 0 Shared-Write-Miss
1 0 0 1 Shared-Write-Hit
2 0 1 0 Shared-Read-Miss
3 0 1 1 Shared-Read-Hit
4 1 0 0 Private-Write-Miss
5 1 0 1 Private-Write-Hit
6 1 1 0 Private-Read-Miss
7 1 1 1 Private-Read-Hit

17 of 18

RPM

Conclusion

❒ Hardware emulation is a promising methodology

❒ Time scaling allows accurate emulation with inexpensive hardware

❒ Potential to largely outperform software simulation

❒ Possible uses:
Rapid prototyping of cache coherence protocols
Validation of hardware/software architecture schemes
Study general purpose application performance
Trace generation
Performance tuning of parallel programs

18 of 18

RPM

See Also

WWW page:

http://www.usc.edu/dept/ceng/dubois/RPM.html

Papers:

RPM: A Rapid Prototying Engine for Multiprocessor Systems,
IEEE Computer, February 1995

The Design of RPM: An FPGA-based Multiprocessor Emulator,
FPGA’95, February 1995.

